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Abstract
Using molecular dynamics simulations we investigate the dynamic structure
factor S(k, ω) of a two-component model plasma where the Coulomb
interaction is regularized at short distances. New simulation results are
presented and discussed, and they are used to verify different theoretical
treatments: the standard random-phase approximation, a dynamic local field
correction with input from HNC calculations and a new approach, which
includes a dynamic collision frequency via the Mermin ansatz.

PACS numbers: 52.27.−h, 52.25.Gr, 52.25.Mq, 71.45.Gm, 52.65.Yy,
02.70.Ns

1. Introduction

Many real plasmas, such as hydrogen or electron–hole systems, can be modelled by the
two-component plasma (TCP) of two species of charged particles. It has, however, to be
treated by quantum mechanics. A classical description is made possible by regularizing the
Coulomb interaction at short distances which avoids the Coulomb collapse in the classical
limit. Molecular dynamics (MD) simulations are a powerful tool to investigate such strongly
coupled TCP-like systems and to verify results of analytical treatments. Here, we consider a
two-component model plasma (TCMP) defined as a system of two species α (e.g. electrons e
and ions i) with masses mα and charges qα and pair interactions Vαβ (r = |rα − rβ |) which
are finite at small distances, i.e. limr→0 Vαβ(r) = Cαβ < ∞, and merge into the Coulomb
interaction at distances which are large compared to the mean inter-particle spacing a, i.e.
Vαβ (r � a) ∼ qαqβ/(4πε0r). These TCP-like systems have a well-defined classical limit.
In this paper, we consider interactions of the specific form

Vαβ(r) = qαqβ

4πε0r

[
1 − exp

(
− r

λαβ

)]
(1)

which is motivated by the quasi-classical effective interactions derived by, e.g. Kelbg [1] and
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Deutsch [2] from quantum-statistical expressions. But here we take it as a definition of our
model and the λαβ as given, external parameters.

In the following, we assume a hydrogen-like TCMP with qi = −qe = e and charge
neutrality, ni = ne = n. In equilibrium, at density n and temperature T, and in the classical
limit (h̄ → 0), the system is completely characterized by the scaled parameters λαβ/a of the
interactions (1) and the coupling parameter � = e2/(4πε0akBT ), where a = (3/4πn)1/3.
Small � � 1 indicate ideal, collisionless plasmas and � � 1 strongly coupled systems.

The properties of two-component model plasmas using effective interactions have already
been investigated by MD simulations during the last three decades, starting with the pioneering
work of Norman [3] and Hansen [4–6] and followed by various other studies such as the more
recent ones reported in [7–13]. Many of them, e.g. [4, 5, 7, 9, 11], also dealt with the
dynamic structure factor. Our present MD studies complement and extend these previous
investigations mainly in two respects: (1) a more systematic analysis of the sensitivity of
a dynamic observable such as the dynamic structure factor on a variation of the effective
potential, i.e. the λαβ , at fixed plasma conditions (n, T ), (2) an extension to larger simulation
cubes and thus smaller k-values. This allows a better evaluation of analytical treatments for
the dynamic density response of nonideal plasmas, as the influence of the nonideality on the
damping of plasma oscillations is in general much larger at lower k-values.

2. Dynamic response of a two-component model plasma

Important quantities to study the dynamic properties of a plasma are the charge-density
response function χqq(k, ω) and the charge-density auto-correlation function or dynamic
structure factor S(k, ω), respectively. While χqq(k, ω) is defined through the variation of the
charge density δρ(k, ω) = χqq(k, ω)φ(k, ω) when applying an external potential φ(k, ω),
the structure factor S(k, ω) represents the spectrum of the charge-density fluctuations in
the equilibrium system. Within the linear response theory, both quantities are related via the
fluctuation–dissipation theorem, and we have

S(k, ω) = 1

N

∫ ∞

−∞
dt eiωt 〈ρk(t)ρk(0)〉 = −2kBT

ω

�

N
Im χqq(k, ω) (2)

for a classical system, see e.g. [14]. Here ρk is the microscopic fluctuating charge density
ρk = ∑

α qα exp(−ik · rα), N is the number of particles, 〈· · ·〉 denotes a statistical average,
and � is the volume of the system. Because we assume a homogeneous and isotropic system,
all quantities depend only on |k|.

2.1. Random-phase approximation (RPA)

For ideal plasmas (� � 1), the charge-density response can be calculated in lowest-order
perturbation theory within the standard random-phase approximation (RPA) (see e.g. [15]).
For the TCMP with interactions (1), i.e. Vαβ(k) = qαqβ

/[
ε0k

2
(
λ2

αβk2 + 1
)]

, this yields the
density-response function [16, 17]

χRPA
qq (k, ω) = e2 χ0

ii

(
1 − Veeχ

0
ee

)
+ χ0

ee

(
1 − Viiχ

0
ii

) − 2χ0
iiχ

0
eeVei(

1 − Viiχ
0
ii

)(
1 − Veeχ0

ee

) − VeiVieχ0
eeχ

0
ii

(3)

with the free density–density-response functions χ0
αα of the non-interacting system(s)

(Vαβ = 0). In a classical treatment, χ0
αα is given by the Vlasov function [18]

χ0
αα(k, ω)

h̄→0= nα

kBT

∫ ∞

−∞

dx√
2π

x exp(−x2/2)

ζα − x + iη
ζα = ω

k

(
mα

kBT

)1/2

(4)
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and η → 0+. In the special case λαβ = 0, equation (3) drastically simplifies to the standard
expression for a TCP, χRPA

qq = e2
(
χ0

ii + χ0
ee

)/(
1 − Viiχ

0
ii − Veeχ

0
ee

)
.

2.2. Dynamic local field correction (DLFC)

For strongly coupled systems, short-range correlations have to be included. It is convenient to
implement them by introducing the dynamic local field corrections Gαβ(k, ω), see, e.g., [19],
that is, by replacing the bare interactions Vαβ(k) in the RPA expression for χqq , equation (3),
with Uαβ(k, ω) = Vαβ(k)[1 − Gαβ(k, ω)].

Various approaches to determine the Gαβ(k, ω) have been developed. In this paper, we
apply the approach proposed by Ichimaru et al [20]. It is based on the low and high ω-limits
of the Uαβ (or likewise the Gαβ), and the interpolation

Uαβ(k, ω) = ωU∞
αβ(k) + iωαβU 0

αβ(k)

ω + iωαβ

(5)

with ω2
αβ = (

ω2
pα + ω2

pβ

)/
2 and the plasma frequencies ω2

pα = q2
αnα

/
ε0mα . The U 0

αβ

and U∞
αβ are fixed by the static properties of the system contained in the pair-distribution

functions gαβ(r) or the partial static-structure factors Sαβ(k), where [2Sαβ(k) − δαβ] =
nα

∫
d3rgαβ(r) exp(−ik · r). They are given through

U 0
αβ(k) = Sαβ(k)

2
(
Sii (k)See(k) − S2

ie(k)
) − δαα (6)

U∞
αβ(k) =

∫
d3r

k4

∑
γ

[
(k · ∇)(k · ∇)

Vαγ (r)

kBT

]
gαγ (r)(nγ δαβ − nαδγβ e−ik·r). (7)

To evaluate equations (6) and (7), we have calculated the gαβ(r) from the fully coupled
hypernetted-chain (HNC) equations for the TCMP with interactions Vαβ (1).

2.3. Dynamic collision frequency (DCF)

Alternatively, the short-range correlations can be accounted for by including ion–electron
collisions. This has been done recently [17] by replacing the free-density response χ0

αα in the
RPA expression, equation (3), with the Mermin response function χν,0

αα ,

χν,0
αα (k, ω) = (ν(ω) − iω)

[
χ0

αα(k, ω + iν(ω))χ0
αα(k, 0)

ν(ω)χ0
αα(k, ω + iν(ω)) − iωχ0

αα(k, 0)

]
(8)

and introducing a complex, frequency-dependent collision frequency ν(ω). The use of such
a dynamic collision frequency generalizes the original Mermin ansatz with a frequency-
independent relaxation time [21] and results in a considerably improved density-response
function χDCF

qq (k, ω) as shown and discussed in [17]. The dynamic collision frequency ν(ω)

itself is derived from a perturbation treatment of a generalized linear response theory [22–24].
In this framework, it is calculated in a first-order Born approximation from the force–force
correlation function based on the ion–electron interaction Vie, equation (1). See [17, 24, 25]
for details.

2.4. Numerical treatment

To study the full many-body dynamics, we performed MD simulations [26], i.e. the classical
equations of motion for a hydrogen-like TCMP of N = Np + Ne = 1414 particles of masses
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mα = mp,me (mp/me = 1836) and charges qα = ±e have been numerically integrated
using a velocity verlet algorithm. The elementary simulation cube of length L is periodically
continued in all three spatial directions. This introduces a discrete set of allowed wave vectors
k = 2πm/L with a smallest wave number k = 2π/L, where 2πa/L = 0.438 in our case.
The actual simulations run over a typical time of τ = 310ω−1

pe at constant total energy in
an equilibrium state, which is prepared by a preceding simulation at constant temperature.
Their accuracy and stability are monitored using the total energy, which is conserved with an
accuracy of typically better than 10−4 . . . 10−3 at a global time step 	t = 0.0105ω−1

pe . Special
attention is paid to close encounters of particles and the arising large forces, in particular for
the ion–electron interaction. Here close colliding particles are propagated as subsystems with
a reduced time step [27, 28].

From the positions {rα(t)} (α = 1, . . . , N) of the particles, the microscopic charge
density ρk is sampled as ρk(t) = ∑

α qα exp(−ik · rα(t)) for values ka = 0.438, 0.619,
0.758, 0.875 and 1.75. The desired correlation function is evaluated as time average over
the simulation time τ and an ensemble average 〈· · ·〉 over typically ten individual runs with
microscopically different initial configurations. The error is deduced from the fluctuations
within this ensemble. Inclusive of a final numerical Fourier transform, the dynamic structure
factor (2) is thus given through

S(k, ω) = 1

2π

∫ τ

−τ

dt Re

[
1

N

1

τ

∫ τ

0
dt ′〈ρk(t

′ + t)ρk(t
′)〉

]
cos(ωt). (9)

3. Analysis of the results

We determined the dynamic structure factor S(k,w) for the hydrogen-like TCMP with
interactions (1) for coupling parameters � = 0.5, 1, 2 and 4 and potential parameters
λ/a ≡ λie/a = 0.1, 0.2, 0.4 and 0.8. The interactions Vee and Vii have been fixed by
using λee = 21/2λie and λii = (2me/mp)1/2λie. The main objective of our studies is to verify
theoretical treatments of nonideal classical TCMPs by comparing them with the simulation
results. But the TCMP can also be viewed as an appropriate model of a real TCP when
quantum diffraction effects are fairly well approximated by the effective potentials (1). This
is expected to be the case for temperatures kBT � 1 Ry, λ about the thermal wavelength
of the electrons and sufficiently nondegenerate systems, i.e. λ/a � 1, see [5] for a more
detailed discussion. For the present set of parameters, the TCMP might thus be a reasonable
approximation for a dense-hydrogen plasma in the parameter region T/K ∼ 105 . . . 106 and
n/cm−3 ∼ 1023 . . . 1025, about the same parameter region as given in [5]. The quasi-classical
treatment of a TCP under these conditions is, however, justified only for static and statistical
considerations. If such simple local effective potentials can also be used for a quasi-classical
description of the dynamic properties of a real TCP is still an open question.

Results from the MD simulations and the three outlined theoretical approaches are shown
in figures 1 and 2 for some examples of combinations of � and λ at specific k-values. The
general observations we made are as follows: as expected, the MD results (filled circles
with errorbars) show for increasing coupling � an increasing damping of the plasmon mode,
i.e. a broadening of the corresponding peak in S(k, ω) around ω ≈ ωp. This can be seen
best from the growing deviations between MD and RPA (dashed curves). But in addition,
the damping of the plasmon mode also increases with decreasing λ (see figures 1 and 2(a),
(b)). Both dependencies have to be attributed to the rising influence of strong short-range
ion–electron correlations on the collective mode, including the formation of classically bound
states. Accordingly, the RPA agrees with the simulation results only at low coupling � and
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Figure 1. Dynamic structure factor S(k,ω) for a proton–electron model plasma as a function of ω

in units of the electron-plasma frequency ωp ≡ ωpe from the MD simulations (• with errorbars)
and the different analytical treatments: RPA (- - - -), DLFC (— · —) and DCF [29] (——). The
parameters are � = 0.5, ka = 0.438 and: (a) λ/a = 0.1, (b) λ/a = 0.2, (c) λ/a = 0.4 and
(d ) λ/a = 0.8.

large λ (see, e.g., figure 1(d ), where � = 0.5 and λ = 0.8a). It grossly underestimates the
damping in all other cases, but, very surprisingly, predicts the position of the plasmon rather
well for most of the studied parameters. We also compare our recent simulation results with
those of Hansen and McDonald [5] who used the same effective potentials (1), however for
somewhat different values of λ and ka. Two examples are given in figure 3 for the lowest
k-value, ka = 0.78, accessible in these early MD simulations with N = Np + Ne = 250, and
� = 0.5, λ/a = 0.45 (open squares on the left) and � = 2.0, λ/a = 0.56 (open squares
on the right). At � = 0.5, there are only small deviations from our results mainly coming
from the sightly different parameters (ka = 0.76 and λ/a = 0.40 in our simulations). The good
agreement with the RPA result in this case compared to the considerable deviation at ka= 0.438
(but otherwise unchanged parameters, see figure 1(c)) clearly demonstrates the importance
of an extension towards smaller k-values in order to improve the evaluation of theoretical
approaches. The comparison shown in the right part of figure 3, on the other hand, again points
out the rather large sensitivity on a variation of the effective interaction, i.e. on λ, where λ runs



6256 T Pschiwul and G Zwicknagel

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

(c)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

(a)

0 0.5 1 1.5 2
0

0.1

0.2
(d)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8 (b)

ω/ωp

ω/ωp ω/ωp

ω/ωp

ω p 
S 

(k
, ω

)/e
2

ω p 
S 

(k
, ω

)/e
2

Figure 2. Dynamic structure factor S(k,ω) for a proton–electron model plasma as in figure 1
for: (a) � = 1, ka = 0.619, λ/a = 0.2, (b) � = 1, ka = 0.619, λ/a = 0.4, (c) � = 2,
ka = 0.875, λ/a = 0.4, (d ) � = 4, ka = 0.875, λ/a = 0.4. In case (d ), the RPA result (- - - -)
is divided by 20.

from 0.8 over 0.56 to 0.4. Once more, the RPA predicts the position of the collective mode
rather well, but grossly underestimates the damping.TheDLFC(dash-dottedcurves in figures 1
and 2), which claims to account for short-range correlations, in fact shows a strong broadening
of the plasmon peak. But at small λ, it significantly overestimates the damping and furthermore
develops a spurious diffusive mode at low frequencies (see, e.g., figures 1(a) and 2(a)). And,
moreover, the DLFC approach provides a marked displacement of the position of the plasmon
in all cases where correlations are relevant, i.e. where MD and RPA deviate significantly (see,
e.g., figures 1(a), (b) and 2). In view of this poor agreement of the DLFC with the simulation
results, we carefully checked the pair correlation functions gαβ(r) used in equations (6) and
(7) as well as the moments of the structure factor 〈ωm〉 = ∫

dω ωmS(k, ω) for m = 0, 2, 4.
The gαβ(r) obtained from the HNC calculations agree, however, very well with those from
the MD, and with respect to the moments, the DLFC and MD results diverge typically less
than a few per cent. Note that the theoretical gαβ(r) and moments of S(k, ω) have been
calculated using exactly the same effective potentials (1) as in the MD simulations and for the
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Figure 3. Dynamic structure factor S(k,ω) for a proton–electron model plasma as in figure 1.
Left: � = 0.5; MD results from [5], ka = 0.78, λ/a = 0.45 (�); MD present work, ka = 0.76,
λ/a = 0.40 (•); RPA: ka = 0.76, λ/a = 0.40 (- - - -). Right: � = 2.0; MD results from [5],
ka = 0.78, λ/a = 0.56 (�); MD present work, ka = 0.76, λ/a = 0.80 (•), ka = 0.76, λ/a =
0.40 (◦); RPA: ka = 0.78, λ/a = 0.56 (- - - -).

RPA predictions. Also a variation of the interpolation procedure equation (5), while
redistributing the position of the peaks and its total strength, does not ameliorate the results.
The DCF (solid curves, data kindly provided by Millat [29]), based on a dynamic collision
frequency, on the other hand excellently reproduces the numerical results within the errors
for coupling parameters � � 2. At even higher coupling, it still predicts fairly well the peak
position and gives a reasonable estimate of the damping (figure 2(d )).

4. Summary and conclusion

From the whole parameter range which we have studied so far, we find that the DLFC
procedure in its presented form seems to improve the description only in those cases where
correlations merely affect slightly the dynamic properties. The DCF, on the other hand, gives
a very satisfactory description of the dynamic density response of a strongly coupled TC(M)P.
This suggests the conjecture that inherent dynamic approaches, such as the DCF, are much
better suited for describing the dynamic properties of nonideal plasmas than methods which
aim at constructing dynamic correlations from static properties. But to verify this surmise, a
further evaluation of existing theoretical treatments is needed, comprising other approaches
also based on the moments and sum-rules for S(k, ω), e.g. the treatment of Adamjan et al
[30]. Such work is in progress.
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